
974 Part XI   Biofi lm

and quorum quenching studies presented at scientifi c meetings 
utilizing multiple in vivo models [8]. 

The experimental strategy varies. In vitro data are relied upon 
to identify the molecular mechanism leading to interference with 
quorum sensing that causes decreased biofi lm formation, whether it 
be blocking the signaling peptide production, blocking receptors or 
active initiation an antagonist signals by the agent. The in vivo data 
confi rm that the agent decreases biofi lm formation.
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QUESTION 2: Can a biomaterial surface be modifi ed to dispel bacterial adherence and biofi lms? 
What are the potential concerns in modifying implant surfaces to combat biofi lms?

RESPONSE: The purpose of the surface modifi cation is to decrease perioperative bacterial adherence and thus prevent biofi lm formation. This 
has been shown in in vitro studies and in vivo animal models. There have been numerous strategies devised to alter surfaces. Such modifi ed 
surfaces may interfere with the expected osseointegration, mechanical stability and long-term implant survivability. The duration of long-term 
anti-infective eff ects are unknown. To date, no positive in vitro eff ect has been translated into a clinical sett ing.

LEVEL OF EVIDENCE: Consensus

DELEGATE VOTE: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

PRE-MEETING RATIONALE

Periprosthetic joint infections (PJI) represent 1-20% of the failure 
mechanisms in total joint arthroplasty leading to signifi cant 
morbidity and mortality [1–3]. The material surface used for implan-
tation is a signifi cant factor in bacterial colonization leading to 
PJI [4,5]. Some surfaces are more prone to bacterial adherence and 
formation of biofi lms. A biofi lm is an aggregate of microbial cells 
that are irreversibly associated with a surface and encapsulated in 
a complex polysaccharide “slime” extracellular matrix that may 
include enzymes, crystals and glycoproteins - together forming a 
living tissue [6,7]. The most common microorganisms residing in 
biofi lms are Staphylococcus S. species [8,9]. The bacteria in biofi lms 
take either sessile forms on metal, bone fragments and cement; or 
planktonic forms that can disperse as clumps within the joint fl uid 
[10,11]. Due to such complexity of form, material and function, the 
question remains whether modifi ed implant surfaces can play an 
anti-infective role and what are the main concerns with modifying 
biomedical devices. 

Can a Biomaterial Surface Be Modifi ed to Dispel Bacterial 
Adherence and Biofi lm?

In 1987, Anthony Gristina [12] was the fi rst to propose the concept 
of a race for the surface, wherein the fate of the biomaterial implant 
is dependent on a balance between tissue integration and microbial 
adhesion with biofi lm formation. This concept sets the hypothesis 

that material modifi cations that improve osseointegraion while 
inhibiting bacterial adhesion would provide a theoretical advantage 
and eliminate the risk of infection [13]. As a result, there is a wide 
array of anti-infective surfaces proposed for utilization in ortho-
paedic implant applications. 

Gallo et al. [14] summarized the available options as bactericidal, 
anti-adhesion surfaces, multifunctional/smart coatings and alterna-
tive materials.

Romanò et al. [15] propose a newer classifi cation regime that 
describes antibacterial coating under three distinctive groups [1]:

1. Passive surface fi nishing/modifi cation Surfaces that prevent 
adhesion without releasing anti-bacterial substances.

2. Active surface fi nishing/modifi cation Surfaces that release anti-
bacterial substances.

3. Perioperative antibacterial carriers or coatings Carriers or coat-
ings applied during surgery that are antibacterial and either 
biodegradable or non-biodegradable.

Active surfaces and perioperative coatings provide only tempo-
rary solutions while they exhaust their antimicrobials in time. 
Passive surfaces may not provide the necessary bactericidal proper-
ties needed to eliminate the infection while their action is limited to 
the immediate peri-implant area. The ideal implant surface should 
have: (1) a strong anti-infective potential, (2) long duration of eff ect, 
(3) biocompatibility with mechanical construct and stability and (4) 
minimal host response and harm [16–18]. To achieve that, surfaces 
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TABLE 1. Proposed anti-infective surfaces for utilization in orthopaedic implant applications

Method Type Examples

Bactericidal

Inorganic Ag, AgNP, AuNP, TiO2, Se, CuNP

Organic Coated or covalently linked antibiotics, 
chitosan derivatives

Combined Multilayer coating, positively charged 
polymers

Other Non-antibiotic (peptides, enzymes, 
oils)

Anti-adhesion Anti-adhesive polymers

Multifunctional/smart coating
Passive Nanostructured “smart” materials
Active Sensors conjoined to nanocontainers

Alternatives Lytic bacteriophages

Ag, silver; NP, nanoparticles; TiO2, titanium oxide; Se, selenium; Cu, copper

can be physically and mechanically prepared and coated or chemi-
cally modifi ed. 

The early reversible adhesion stage of bacteria to titanium is 
largely infl uenced by the topographical features on the surface [19]. 
Several anti-adherent coatings on titanium have been created by 
surface modifi cation with polymers, copolymers or proteins. Del 
Curto et al. [20] has shown that the crystalline phase of titanium 
oxide on the surface of biomaterials reduced bacterial att achment 
without adverse eff ects on the biocompatibility. Ferraris et al. [21] 
showed that mechanically produced nanogrooves (0.1-0.2 um) and 
keratin nanofi bers can increase biocompatibility without increasing 
bacterial adhesion. Lorenzett i et al. [19] has applied hydrothermic 
treatment methods to similarly achieve decreased bacterial adhe-
sion. This data is very encouraging and supports the concept that 
biomaterial surfaces can be modifi ed to dispel bacterial adherence.

Silver (Ag) has been known throughout history not only for 
its jewelry applications but for its antimicrobial eff ects [22,23]. The 
mechanism of action is thought to be the formation of reactive 
oxygen species and biologically active ions that damage bacte-
rial walls and bind to nucleic acids and interrupt bacterial repli-
cation [24]. An added advantage of Ag usage is the eff ect against 
surface-adhered bacteria without signifi cant drug-resistance [25,26]. 
Harrasser et al. [27] studied the antimicrobial eff ects of Ag and has 
observed signifi cant antimicrobial activity that was positively corre-
lated with Ag concentrations. A recent study by Aurore et al. [28] 
indicated that Ag nanoparticles (AgNPs) enhanced the bactericidal 
activity in osteoclasts.

As such, AgNPs have gained att ention for their application 
on implant surfaces due to their anti-biofi lm potential, wide-
spectrum antimicrobial properties and low cytotoxicity to human 
cells [18,22,29–33]. There is an abundance of literature that examine 
the anti-biofi lm eff ect of AgNPs [18,25,34]. Kalishwaralal et al. [35] 
demonstrated that AgNPs at a concentration of 100 nM almost 
entirely inhibited biofi lm formation (> 95%) from S. epidermidis and 
Pseudomonas aeruginosa. Slane et al. [33] found that bone cements 
impregnated with AgNPs signifi cantly reduced biofi lm formation 
compared to standard cement. Some studies have also mentioned 
the synergistic eff ect of AgNPs with antibiotics [36–38]. The most 
notable advantage of AgNP-coated surfaces is the ability to exhibit 
a continuously controlled-release of active agents to the peripros-
thetic region for a substantial period of time, thus working at both 
the surface layer but also in the immediate environment.

Recently, iodine has been shown to be a successful adjuvant 
for irrigation and debridement in cases of PJI [39]. Adapting this 

idea to implant surfacers, Tsuchiya et al. [40] report on a clinical 
study of more than 222 patients in whom iodine surface treated 
implants were very eff ective for preventing and treating infections 
after orthopaedic surgery. No clear cytotoxicity or adverse eff ects 
were observed. Shirai et al. [41] similarly demonstrated a signifi cant 
reduction in pin tract infection rate by using iodine surface-treated 
insertion pins and external fi xators. Kabata et al. [42] also show that 
iodine treated hip implants remained free of infection in 14 revision 
cases for infection and in 16 immunosuppressed primary total hip 
arthroplasties. No issues related to local and systemic toxicity or 
impaired osteoconductivity and bone bonding have been reported 
in any of these studies.

Similar to Ag and iodine, multiple studies have targeted incor-
poration of antibiotics into surface coatings directly deposited 
onto the implant [43–45]. Most of these applications build on the 
information learned from antibiotic-laden bone cements and 
provide an initial protective barrier for infection [46–48]. Current 
protocols include hydrogels, poly-D, L-lactide, calcium phosphate 
or carbonated hydroxyapatite antibiotic coatings. Other direct 
techniques att empt to physically modify the surface for antibiotic 
adsorption, or simply dip the implant in antibiotics producing 
a transient coating [48–50]. Recent scientifi c progress in biomo-
lecular interactions and nanoscale engineering provides new inspi-
ration for medical implant designs that may have the potential to 
deal with infection [51,52]. Antibiotics covalently linked to metallic 
surfaces have been shown to inhibit bacterial colonization both in 
vitro and in vivo [13,53,54]. Despite all progress, most systems are 
rudimentary and diffi  cult to scale up to industry standards; further 
research and a smarter implant technology is necessary. Such tech-
nology should directly integrate biological defenses in the implant 
design, making protection feasible for the life of the replacement 
prosthesis.

What Are the Main Problems in Modifying Implant Surfaces 
in the Fight Against Biofi lms?

One of the main concerns of antimicrobial biomaterials is the 
possible cytotoxic eff ect of the surface modifi cation as related to 
osseointegration and implant survival in vivo. Based on a prelimi-
nary literature review, only four laboratory studies [55–58] and one 
clinical study [59] reported the side eff ects of surface modifi cation. 
Ag surface modifi cations have shown higher lactate dehydrogenase 
(LDH) activity as a marker of cell death, as well as lower cell count 
and alkaline phosphatase (ALP) activity [55–58]. Nevertheless, such 
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eff ects are hard to correlate with clinical outcomes. Glehr et al. [59] 
performed the only clinical study that focused on Ag while exam-
ining its use in mega-prosthesis. They have documented the pres-
ence of heavy metal poisoning symptoms, even though no correla-
tion with the blood Ag concentration was observed. Another two in 
vitro studies used zinc and farnesol (anti-fungi medicine) surface 
modifi cations respectively. The results showed lower ALP activity 
as well as pre-osteoblastic cell damage. Multiple studies thus agree 
that AgNPs have the potential to be toxic to many cell types in a dose- 
and time-dependent manner, especially when inhaled, injected or 
ingested [60–62]. Interestingly, Shen et al. [63] conducted a study 
which revealed that both cobalt chrome alloys and pure titanium 
had cytotoxic eff ects to osteogenic precursor cells and mesenchymal 
stem cells, while the incorporation of AgNPs reduced this cytotox-
icity.

When working with modifi ed surfaces, bacteria can ultimately 
adapt and develop resistance to the agent used. Antibiotic resist-
ance is an everyday occurrence in clinical practice. Bacteria have also 
been shown to surmount resistance to the ionic form of Ag, and less 
commonly, to AgNPs [64,65]. This is because prolonged exposure to 
AgNPs, unlike Ag ions, is less likely to result in resistance genes, since 
AgNPs have broad-spectrum capabilities by targeting multiple sites 
on or within bacterial cells [66]. Nevertheless, resistance to silver 
seems to be a slow process and is a less of a problem compared to 
antibiotic resistance [67]. Concerning though, Kaweeteerawat et al. 
[68] suggest that AgNPs could potentially enhance bacterial resist-
ance to antibiotics through promoting stress tolerance by induction 
of intracellular reactive oxygen species causing DNA mutations. 

In conclusion, bacterial biofi lms are diffi  cult for antimicrobial 
agents to penetrate. Preventing biofi lms and bacterial adherence is 
probably the only eff ective way to address the problem of PJI. AgNPs 
and iodine are gaining increasing popularity especially for their anti-
adhesion, anti-infective, and minimal bacterial resistance proper-
ties. Nevertheless, further investigation of the long-term outcomes 
of patients with modifi ed surfaced implants is warranted.
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QUESTION 3: What is the relevance of minimum inhibitory concentration (MIC) of infecting 
organisms in biofi lm-mediated chronic infection?

RESPONSE: The use of MIC is limited to (1) defi ning antibiotics that the microorganism is susceptible to in its planktonic state but cannot be 
used to guide treatment of biofi lm-based bacteria and (2) selecting long-term suppressive antibiotic regimens where eradication of infection is 
not anticipated. Alternative measures of antibiotic effi  cacy specifi cally in the context of biofi lm-associated infection should be developed and 
validated. 

LEVEL OF EVIDENCE: Strong

DELEGATE VOTE: Agree: 100%, Disagree: 0%, Abstain: 0% (Unanimous, Strongest Consensus)

PRE-MEETING RATIONALE

MICs are used to defi ne an individual microorganism’s (hereafter 
limited to bacteria) susceptibility to a distinct array of antibi-
otics. Established methodologies for determining MICs relate to 
the planktonic state of the bacteria but not to biofi lm-indwelling 
bacteria [1].

The majority of information relating to susceptibility testing 
and biofi lm-indwelling bacteria originates from research in Cystic 
Fibrosis [2]. In relation to implant-associated biofi lm infections, 

central venous catheters and urinary tract catheters are often investi-
gated, but litt le clinical research has been performed in orthopaedic 
implant-associated biofi lm infections [2,3]. 

As early as 1990, Anwar and Costerton identifi ed the need for an 
extreme increase in in vitro concentrations of antibiotics, to which 
the planktonic bacteria were fully susceptible, when treating biofi lm-
indwelling bacteria [4,5]. In a review by key-opinion leaders on the 
topic of antimicrobial susceptibility testing in biofi lm-indwelling 


